

Modeling of Composites in LS-DYNA

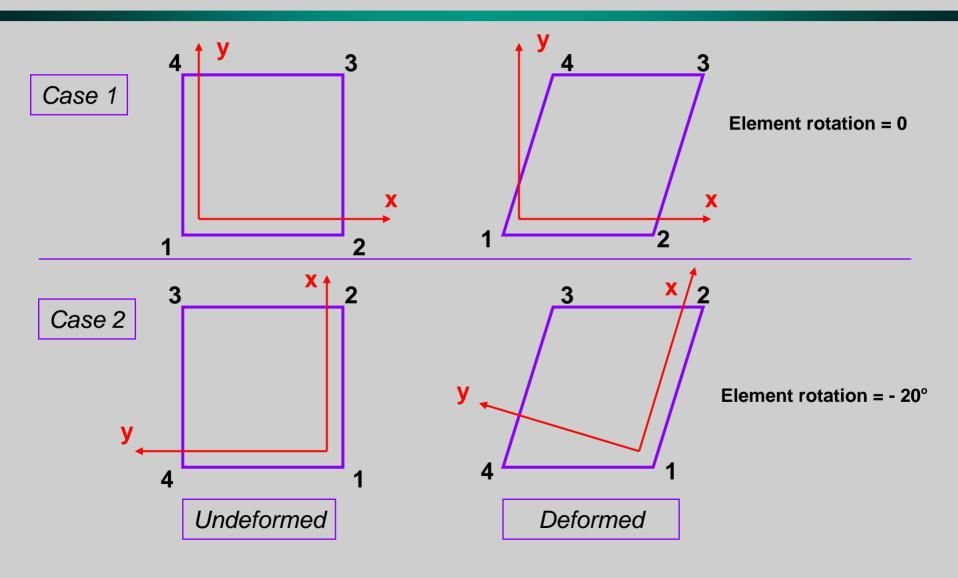
- Some Characteristics of Composites
- Orthotropic Material Coordinate System
- User-defined Integration Rule for Shells
- Output for Composites
- Some Characteristics of Several Composite Material Models in LS-DYNA
- Closing Recommendations

Two Types of Composites

- Advanced composites have stiff, high strength fibers bound in a matrix material.
 - Each layer/lamina/ply is orthotropic by nature as the fibers run in a single direction.
 - Usually, an advanced composite section will have multiple layers and each lamina within the stack will have the fibers running in a different direction than in the adjacent lamina.
- A <u>sandwich composite</u> section has laminae which may be individually isotropic but the material properties and thickness may vary from lamina to lamina.
 - A foam core composite is a particular type of sandwich composite where a thick, soft layer of foam is sandwiched between two thin, stiff plies.

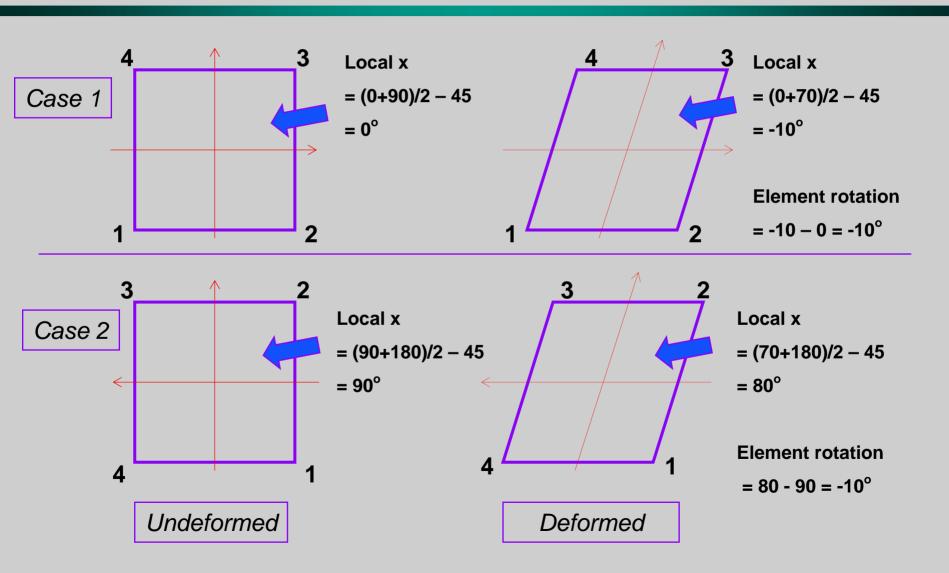
Orthotropic Materials in LS-DYNA

- Orthotropic material constants are defined in the material coordinate system.
- The material coordinate system must be initially established for each orthotropic element and, in the case of shells, for each through-thickness integration point as well. This orientation comes from three sources.
 - In the material definition (*mat)
 - See description of "AOPT" in User's Manual under *mat_2 (orthotropic_elastic)
 - In the section definition (*section_shell)
 - A "beta" angle is given for each integration point
 - Optionally, in the element definition (*element_shell_beta, *element_solid_ortho)



Orthotropic Materials in LS-DYNA

- As the solution progresses and the elements rotate and deform, the material coordinate system is automatically updated, following the rotation of the element coordinate system.
 - The orientation of the material coordinate system and thus response of orthotropic shells can be very sensitive to in-plane shearing deformation and hourglass deformation, depending on how the element coordinate system is established.
 - To minimize this sensitivity, "Invarient Node Numbering", invoked by setting INN = 2 (shells) or 3 (solids) in *control_accuracy is highly recommended.

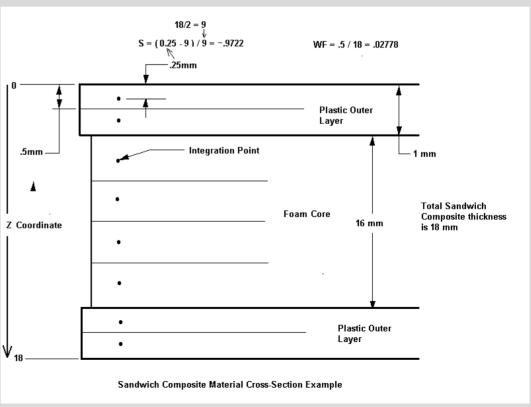


Without Invarient Node Numbering (N1-to-N2 establishes element x-direction)

With Invarient Node Numbering (based on element bisectors)

User-Defined (Through-Thickness) Integration

- Gaussian or Lobatto integration rules have preestablished integration point locations and weights (NIP <= 10).
 - Lobatto includes integration points on the outside surfaces
- Trapezoidal integration has equally spaced integration points.
- For composites, the user may need to define his/her own integration point locations and weights (corresponding to ply thicknesses) and may need to reference a different set of material constants for each integration point.


User-Defined Integration (970)

```
*PART
material 1
           1
                                  11
*PART
                                                                                Negative value indicates user integration rule
material 2
                                  12
*SECTION SHELL
 18,000000 18,000000 18,000000 18,000000
*mat layered linear plasticity
                                                                               18/2 = 9
11, 2.7e-6, 73.4, 0.32, 1e9
                                                                         S = (0.25 - 9) / 9 = -.9722
                                                                                                    WF = .5 / 18 = .02778
                                                                              .25mm
*mat layered linear plasticity
                                                                                                     Plastic Outer
12, 6.3e-7, 0.286, 0.3, 1e9
                                                                                                     Laver
                                                                                 Integration Point
                                                       .5mm
                                                                                                                    1 mm
*INTEGRATION SHELL
20,8,0
                                                                                                                     Total Sandwich
-.9722, .02778, 1
                                                                                                Foam Core
                                                                                                                     Composite thickness
                                                                                                           16 mm
                                                     Z Coordinate
                                                                                                                     is 18 mm
-.9167, .02778, 1
-.6667, .22222, 2
-.2222, .22222, 2
 .2222, .22222, 2
 .6667, .22222, 2
 .9167, .02778, 1
 .9722, .02778, 1
                                                                                                        Plastic Outer
                                                                                                        Layer
*ELEMENT SHELL
                  1
                                               33
                  1
                                                                      Sandwich Composite Material Cross-Section Example
```


User-Defined Integration (971)

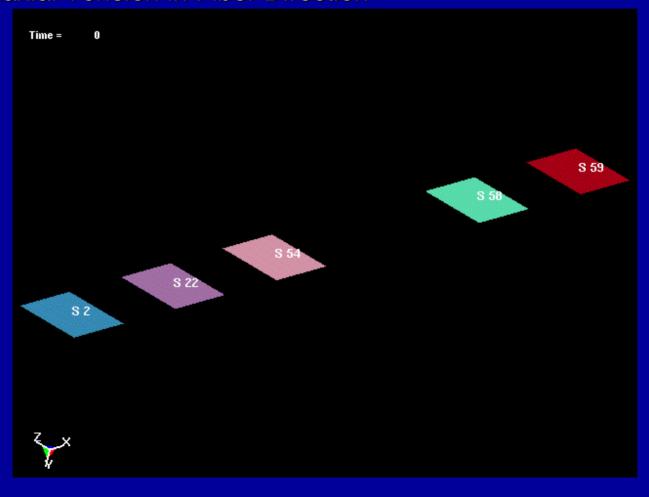
```
$ no *section command needed
$ thickness is sum of thick values given in *PART COMPOSITE
$ no need for multiple *PART commands
*PART COMPOSITE
$ pid, elform
1, 2
$ mid, thick, beta,,mid,thick,beta
  11, 0.5,,, 11, 0.5
12, 4.0,,, 12, 4.0
  12, 4.0,,, 12, 4.0
  11, 0.5,,,
                    11, 0.5
*mat layered linear plasticity
11, 2.7e-6, 73.4, 0.32, 1e9
   NOTE: foam core could use a different
         material model (971)
*mat layered linear plasticity
12, 6.3e-7, 0.286, 0.3, 1e9
*ELEMENT SHELL
                                      33
               1
                                      34
```


Output for Composites

- For composite material models, stresses (and strains) will be written in the material coordinate system rather than the global coordinate system if CMPFLG (and STRFLG) is set to 1 in *database_extent_binary.
 - Useful option for postprocessing of fiber and matrix stresses.
- Set MAXINT in *database_extent_binary to the total number of through-thickness integration points in your composite shell. By default, stresses only at the top, bottom, and middle integration points are written.

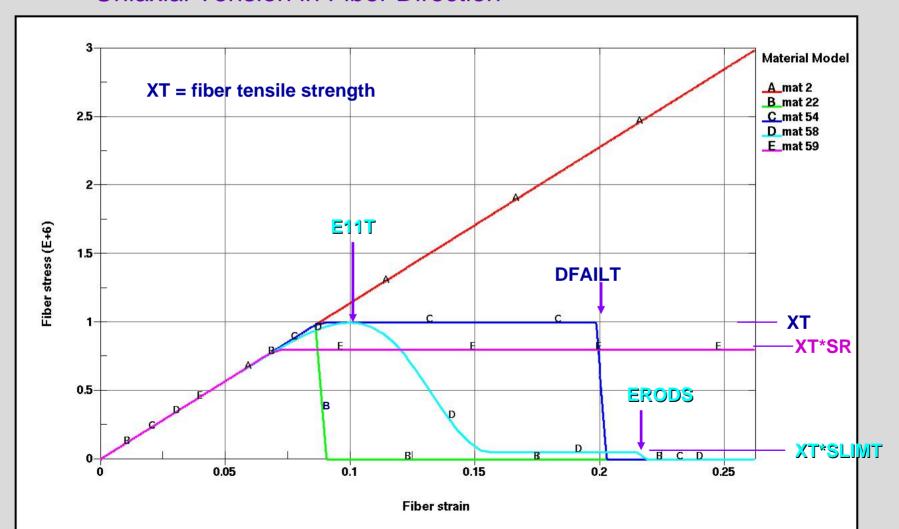
Output for Composites

- Some composite material models have "extra history variables" that help to track modes of failure in each integration point. (See material documentation in the User's Manual for details.)
 - NEIPS (shells) or NEIPH (solids) in *database_extent_binary should be set to the number of extra history variables needed. For example, if you want to track the damage parameter in mat_054, set NEIPS to 6.


- *mat_2 (elastic_orthotropic)
 - 9 elastic constants (solids); 6 elastic constants (shells).
 - Total Lagrangian formulation (okay for large elastic deformations).
 - No failure criteria.
- Each of the following orthotropic materials offer a particular brand of fiber/matrix damage and failure criteria. Up to 5 strength values are given (XT, XC, YT, YC, SC).
 - *mat_22 (composite_damage)
 - *mat_54,55 (enhanced_composite_damage)
 - *mat_58 (laminated_composite_fabric)
 - *mat_158 includes strain rate effects
 - *mat_59 (composite_failure(_shell, _solid)_model)
 - Can be used with shells or solids

The paper "Crashworthiness Analysis with Enhanced Composite Material Models in LS-DYNA - Merits and Limits", Schweizerhof et al, 5th International LS-DYNA User's Conference (1998) provides some insight into several composite material models in LS-DYNA, including mat_54, mat_58, and mat_59. This paper is available as a PDF file.

Comparison of Several Composite Material Models


Uniaxial Tension in Fiber Direction

Comparison of Several Composite Material Models

Uniaxial Tension in Fiber Direction

Laminated Shell Theory

- Use of Laminated Shell Theory (LST) is important if a composite shell has layers of dissimilar materials.
 - LST corrects for the incorrect assumption of uniform constant shear strain through the thickness of the shell.
 - Without LST, a sandwich composite will generally be much too stiff.
 - LAMSHT=1 in *control_shell invokes LST for material models 22, 54, 55, 76
 - *Mat_layered_linear_plasticity (114) is a plasticity model much like mat_024 but which includes LST.

- *mat_116 (composite_layup)
 - Orthotropic elastic resultant formulation (no stresses calculated)
 - Very efficient for large number of layers
 - Requires *integration_shell
 - Material constants can vary from layer to layer
 - Does NOT use laminated shell theory (not good for foam core/sandwich composites)

- *mat_117 (composite_matrix)
- *mat_118 (composite_direct)
 - Resultant formulation (no stresses calculated)
 - 21 coefficients of symmetric stiffness matrix are input directly
 - Stiffness coefficients in 117 given in material coord system
 - Stiffness coefficients in 118 given in element coord system (less storage req'd)
 - Shell thickness is inherent in stiffness matrix. Thus uniform thickness of part is mandatory.

- *mat_161 (composite_msc)
 - Proprietary model from Materials Sciences (requires license add-on)
 - Available for solids only
 - Offers fiber shear and fiber crush failure criteria
 - Can predict delamination
 - *mat_162 like *mat_161 but adopts damage mechanics approach for softening after damage initiation

A Word about Delamination

- Shells do not have σ_{zz} component of stress and thus are not well-suited to rigorous study of composite delamination.
- Delamination may be approximated using multiple layers of shells tied with *CONTACT_..._TIEBREAK in which failure of contact represents delamination.

Closing Recommendations

- Most composites do not stretch significantly before breaking. To promote numerical stability, shell thinning option should NOT be invoked. Leave ISTUPD in *control_shell set to zero.
- 'Noise' in response can be mitigated by stiffness damping in some cases. See
 *damping_part_stiffness.
- Shell bulk viscosity (*hourglass, ITYPE=-1) may aid stability in compressive modes of response.