TEST CASE DOCUMENTATION AND TESTING RESULTS

LSTC-QA-LS-DYNA-AWG-ERIF-5-8

TEST CASE ID AWG-ERIF-5

Bird Strike on Rigid Plate

Tested with LS-DYNA® R9.0 Revision 108899

Tuesday 16th August, 2016

Warranty Disclaimer:

The test case(s) described herein are for illustrative purposes only. LSTC does not warrant that a user of these or other LS-DYNA features will experience the same or similar results or that a feature will meet the user's particular requirements or operate error free. FURTHERMORE, THERE ARE NO WARRANTIES, EITHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, WITH RESPECT TO THE DOCUMENTATION AND SOFTWARE DESCRIBED HEREIN INCLUDING, BUT NOT LIMITED TO ANY IMPLIED WARRANTIES (i) OF MERCHANTABILITY, OR (ii) FITNESS FOR A PARTICULAR PURPOSES, OR (iii) ARISING FROM COURSE OF PERFORMANCE OR DEALING, OR FROM USAGE OF TRADE OR. THE REMEDIES SET FORTH HEREIN ARE EXCLUSIVE AND IN LIEU OF ALL OTHER REMEDIES FOR BREACH OF WARRANTY.

Document Information			
Confidentiality	external use		
Document Identifier	Occument Identifier LSTC-QA-LS-DYNA-AWG-ERIF-5-8		
Author(s)	r(s) Prepared by LS-DYNA® Aerospace Working Group		
Number of pages	lumber of pages 16		
Date created	Date created Tuesday 16 th August, 2016		
Distribution LS-DYNA® Aerospace Working Group / internal LSTC QA			

Contents

1	Introduc 1.1 Pur	tion pose of this Document	1
2	Test Cas	se Information	2
3	3.1 Tes 3.2 Tes	te Specification t Case Purpose	4
4	4.1 Tes	ecifications t Case Targets	
5		e Results tware and Hardware Specifications	9
		sults Summary	
	5.3. 5.3. 5.3.	1 Sub Test Case ID 1 - Test Target 1 1 2 Sub Test Case ID 1 - Test Target 2 1 3 Sub Test Case ID 2 - Test Target 1 1 4 Sub Test Case ID 2 - Test Target 2 1 5 Sub Test Case ID 3 - Test Target 1 1 6 Sub Test Case ID 3 - Test Target 2 1	2 3 4
Re	eferences	1	16

1 Introduction

1.1 Purpose of this Document

This document specifies the test case AWG-ERIF-5. It provides general test case information like name and ID as well as information to the confidentiality, status, and classification of the test case.

A detailed description of the test case is given, the purpose of the test case is defined, and the tested features are named. The test case specifications also state the target measures for testing and the expected results, as well as their pass and fail criteria.

Testing results are provided in section 5 for the therein mentioned LS-DYNA® version and platforms.

2 Test Case Information

Test Case Summary			
Confidentiality external use			
Test Case Name	Bird Strike on Rigid Plate		
Test Case ID	AWG-ERIF-5		
Test Case Status active			
Test Case Classification	fication Example		
Test Case Source	LS-DYNA Aerospace Working Group		
Tested Keyword *MAT_009 (MAT_NULL)			
Member of Test Suite	e AWG ERIF SUITE		
Metadata	AWG ERIF		

Table 1: Test Case Summary

3 Test Case Specification

3.1 Test Case Purpose

The purpose of Test Case ID AWG-ERIF-5 is the comparison of results from different modelling approaches for a bird strike analysis. The consistency of the modelling approaches, as well as the cross cpu architecture consistency of LS-DYNA® for this impact simulation is evaluated by performing calculations of three sub test cases with different modelling approaches for the bird (see table 4).

3.2 Test Case Description

This Test Case contains a bird strike analysis (see figure 1) using a simplified ellipsoidal geometry for the bird impacting a rigid plate.

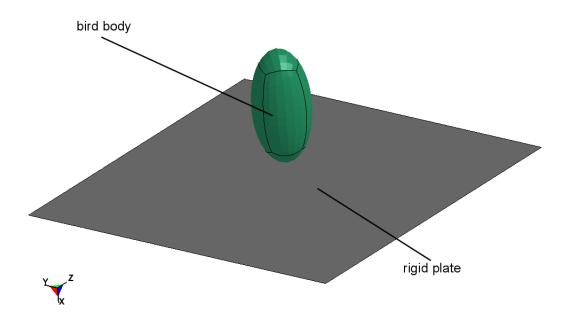


Figure 1: Model sketch: Simplified bird geometry impacting a rigid plate

A summary of the model set-up can be found in table 2.

Physical Model Information				
plate geometry	30"x30"			
plate material	rigid			
bird geometry	Ellipsoid, polar radius = 10", equatorial radii = 5"			
bird material	unknown			
bird velocity	$v_x = 4200 \text{ in/s}$			

Table 2: Model set-up data

3.3 Model Description

Three sub test cases are defined here that use different model approaches for the numerical representation of the bird (see table 4). The first one is a Lagrangian approach which discretizes the bird geometry via solid elements, see figure 2. The second sub test case is an Arbitrary-Lagrangian-Eulerian (ALE) approach which represents the bird and the air by a volume fraction distribution in an ALE computational domain discretized by solid elements, see figure 3. The third sub test case is a Smooth Particle Hydrodynamics (SPH) approach which represents the bird material by SPH particles, see figure 4. Additional information on the models can be found in table 3.

FEA Model information					
Sub Test Case ID ¹	1	2	3		
Modelling approach	Lagrangian	ALE	SPH		
Nodes	15278	115652	42289		
Solid elements	432	84800	-		
Solid materials	1	1	-		
Shell elements	14400	16230	14400		
Shell materials	1	2	1		
SPH nodes	-	-	27648		
SPH materials	-	-	1		
Parts	2	3	2		
Plate geometry	30"x30"				
Plate material	*MAT₋RIGID				
Bird geometry	Ellipsoid, major axis = 10", minor axis = 5"				
Bird velocity	$v_x = 4200 \text{ in/s}$				
Bird material	*MAT_NULL				
Units	in (length), s (time), lbf-s ² /in (mass), psi (stress), lbf-in (energy)				

¹ Sub Test Case ID refers to the ID's in table 4

Table 3: FEA Model Information

The material definitions and their parameters can be found in the input decks.

Sub Test ID	Modelling Approach	Input Deck Name
1 Lagrangian, see figure 2		flat_rigid_plate_lagrangian_bird_strike_1.1.k
2	Arbitrary-Lagrangian-Eulerian (ALE), see figure 3	flat_rigid_plate_ALE_bird_strike_1.2.k
3	Smooth Particle Hydrodynamics (SPH), see figure 4	flat_rigid_plate_sph_bird_strike_1.0.k

Table 4: Specification of sub test cases

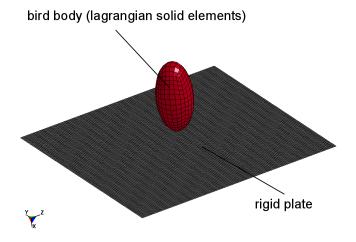


Figure 2: FEA model: Sub Test Case 1 - Lagrangian approach

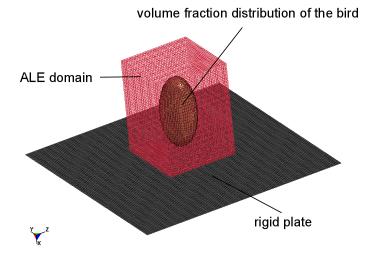


Figure 3: FEA model: Sub Test Case 2 - ALE approach

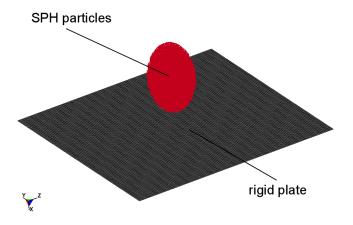


Figure 4: FEA model: Sub Test Case 3 - SPH approach

4 Test Specifications

4.1 Test Case Targets

Table 5 displays the test case targets. The test case targets specify values or a series of values taken from the finite element analysis solution of the test case and they are used in a comparison of analysis results on different cpu architectures. They are chosen in a way that they are representative of the numerical model.

Test Case Targets							
Target number output component type component id						retrieved from	
			1 ¹	11 21			
1	kinetic energy	kinetic energy part 10		910004	11	binout/matsum file	
2	internal energy	part	10	10 910004 11		binout/matsum file	
3	resultant interface forces master x 1 -		-	1	binout/rcforc file		
4	fluid-structure interaction data	fx	- 200002 - binout/dbfsi f		binout/dbfsi file		

¹ This ID referes to the sub test case ID, see table 4.

Table 5: Test Case targets for Test Case ID AWG-ERIF-5

The targets 1 and 2 are used to evaluate the cross cpu architecture consistency of the different sub test cases and targets 3 and 4 to evaluate the impulse consistency of the different sub test cases (see section 4.2). The bird is represented by part 10 in the Lagrangian approach, part 910004 in the ALE approach and part 11 in the SPH approach.

4.2 Pass/Fail Criteria

These are the Pass/Fail criteria used for the cross cpu architecture consistency test for the sub test cases and the impulse consistency test of the Test Case ID AWG-ERIF-5.

The sub test case passes if all of the following criteria are reached:

- For a specific test case target, the maximum distance between an x-y pair of a slope of one cpu architecture/software version combination to at least one x-y pair of all other tested cpu architecture/software version combinations is 15% of the maximum slope value.
- For test case target 3 and 4, the maximum distance between an x-y pair of a slope of the averaged impulse of all cpu architecture/software version combination of a sub test case to at least one x-y pair of the averaged impulse of all cpu architecture/software version combinations of the sub text cases is 20% of the maximum slope value. For this criteria only the time interval [0.0 sec : 0.0045 sec] is considered.

Otherwise the consistency tests fail.

5 Test Case Results

5.1 Software and Hardware Specifications

In order to ensure cross-platform consistency, the herein mentioned sub test cases are run on platforms specified in table 6 and the results are calculated with software versions defined in table 7.

Platform Name	Operating system	CPU type	MPI-Protocol	Number of cpu's 1
sandwich SUSE LES 11.1		Intel [®] Xeon [®] E7- 8837 @ 2.67GHz	Platform MPI 8.2.0.0	4
ham	CentOS 5.4	AMD® Opteron® 8435@ 800MHz	Platform MPI 8.1.0.0	4
sgi64e	SUSE LES 9.4 ²	Intel [®] Itanium [®] 2 @ 1.6GHz	SGI MPT 1.13	4

¹ Number of cpu's used for calculation of the test case

Table 6: Used Platforms and CPU Type's

Product	Version	Release	Revision	Parallel type 1	Precision ²	executable
LS-DYNA®	971	R9.0	108899	SMP	SP	ls971.108899.R9.0
LS-DYNA®	971	R9.0	108899	SMP	DP	ld971.108899.R9.0
LS-DYNA®	971	R9.0	108899	MPP	SP	mpp971.108899.R9.0
LS-DYNA®	971	R9.0	108899	MPP	DP	mpd971.108899.R9.0

¹ MPP = Massively Parallel Processing, SMP = Symmetric Multiprocessing

Table 7: Tested LS-DYNA® version

² SGI PROPACK 4

 $^{^2}$ SP = single precision, DP = double precision

5.2 Results Summary

Table 8 contains the results of the Test Case ID AWG-ERIF-5 completed with all combinations of software and hardware defined in section 5.1 (3 * 3 * 4 total calculation runs). Details on the test results can be found in the section 5.3.

The table 8 cross cpu architecture consistency and impulse consistency summary is:

- PASS Pass criteria in section 4.2 is attained.
- FAILED Pass criteria in section 4.2 is not attained.
- ERROR sub test case terminates due to error.
- N/A sub test case was not calculated.

Sub Test Case ID	PASS/FAILED
1	PASS
2	PASS
3	FAILED

Table 8: Test results summary for Test Case ID AWG-ERIF-5

5.3 Result Details

The following subsections contain detailed results for the Test Case ID AWG-ERIF-5 for LS-DYNA® R9.0 Revision 108899.

For each sub test case defined in section 3.3 there is a graph displaying the time history of the result target defined in section 4.1 for the platform and software version combinations defined in section 5.1.

The title of the graph states the name of the input deck, the result file name, and the output separated by underscores. The legend contains the result file name, output, platform, and executable. The last number of the legend specifies the number of cpu's used to calculate the example. A leading minus sign refers to the compatibility option for SMP calculations (see [1] for details on this option).

Example for title and legend:

Title:

'flat_rigid_plate_sph_bird_strike_1.0.k: matsum_kinetic_energy_10' states that the input deck for sub test case 1 was used to calculate these results. The component displayed is the kinetic energy of part 10 derived from the 'matsum' output file.

Legend:

'matsum_internal_energy_10_sandwich_ls971.108899.R9.0_4' states that the graph shows the kinetic energy of part 10 derived from the 'matsum' output file for an input deck which was calculated on the 'sandwich' platform with a LS-DYNA® R9.0 Revision 108899 binary (SMP, single precision) on four processors.

5.3.1 Sub Test Case ID 1 - Test Target 1

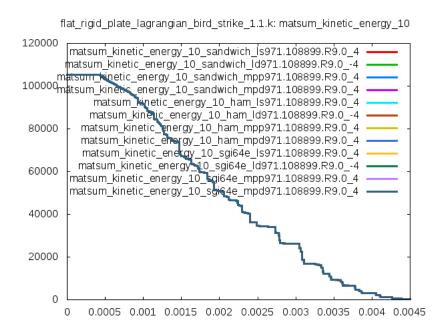


Figure 5: Cross platform results, kinetic energy part 10 (bird body), sub test case ID 1

5.3.2 Sub Test Case ID 1 - Test Target 2

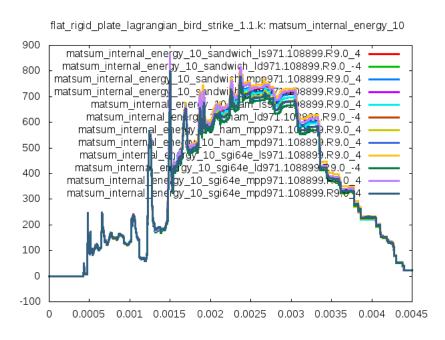


Figure 6: Cross platform results, internal energy part 10 (bird body), sub test case ID 1

5.3.3 Sub Test Case ID 2 - Test Target 1

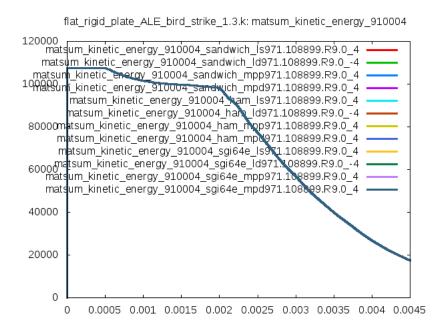


Figure 7: Cross platform results, kinetic energy part 910004 (bird body), sub test case ID 2

5.3.4 Sub Test Case ID 2 - Test Target 2

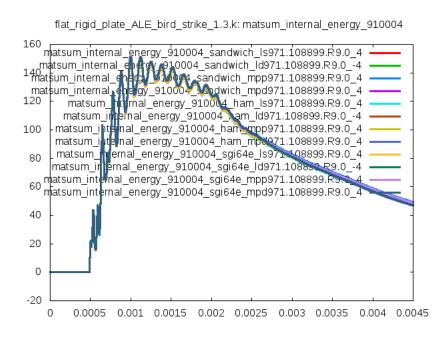


Figure 8: Cross platform results, internal energy part 920004 (bird body), sub test case ID 2

5.3.5 Sub Test Case ID 3 - Test Target 1

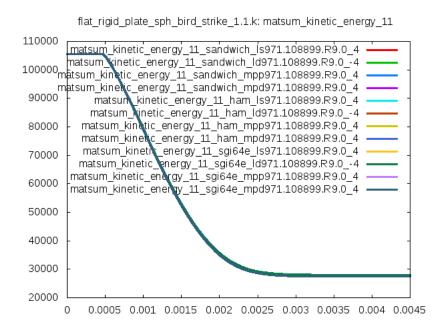


Figure 9: Cross platform results, kinetic energy part 11 (bird body), sub test case ID 3

5.3.6 Sub Test Case ID 3 - Test Target 2

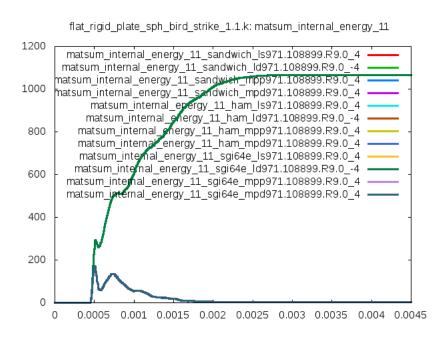


Figure 10: Cross platform results, internal energy part 11 (bird body), sub test case ID 3

5.3.7 Test Case AWG-ERIF-5 - Test Target 3 and 4

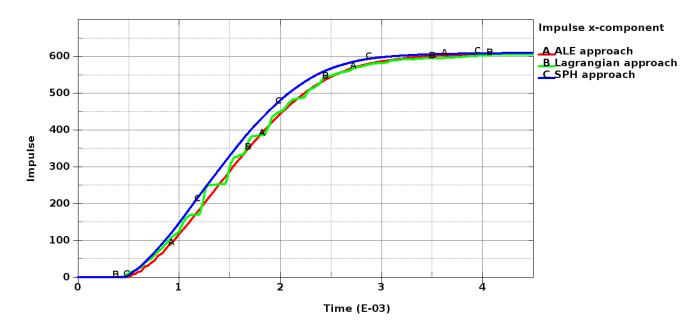


Figure 11: Platform averaged impulse for the different modelling approaches

References

[1] LSTC, LS-DYNA KEYWORD USER MANUAL, 7374 Las Positas Road, Livermore, CA, 94551, USA, version 971 ed., May 2007.