TEST CASE DOCUMENTATION AND TESTING RESULTS

LSTC-QA-LS-DYNA-AWG-ERIF-10-7

TEST CASE ID AWG-ERIF-10

MAT_224
Dynamic Punch Test Aluminium 2024

Tested with LS-DYNA® R9.0 Revision 108899

Saturday 9th July, 2016

Warranty Disclaimer:

The test case(s) described herein are for illustrative purposes only. LSTC does not warrant that a user of these or other LS-DYNA features will experience the same or similar results or that a feature will meet the user's particular requirements or operate error free. FURTHERMORE, THERE ARE NO WARRANTIES, EITHER EXPRESS OR IMPLIED, ORAL OR WRITTEN, WITH RESPECT TO THE DOCUMENTATION AND SOFTWARE DESCRIBED HEREIN INCLUDING, BUT NOT LIMITED TO ANY IMPLIED WARRANTIES (i) OF MERCHANTABILITY, OR (ii) FITNESS FOR A PARTICULAR PURPOSES, OR (iii) ARISING FROM COURSE OF PERFORMANCE OR DEALING, OR FROM USAGE OF TRADE OR. THE REMEDIES SET FORTH HEREIN ARE EXCLUSIVE AND IN LIEU OF ALL OTHER REMEDIES FOR BREACH OF WARRANTY.

Document Information				
Confidentiality	external use			
Document Identifier	STC-QA-LS-DYNA-AWG-ERIF-10-7			
Author(s)	Prepared by LS-DYNA® Aerospace Working Group			
Number of pages	12			
Date created	Date created Saturday 9 th July, 2016			
Distribution LS-DYNA® Aerospace Working Group / internal LSTC QA				

Contents

1	Introduction 1.1 Purpose of this Document	1
2	Test Case Information	2
3	Test Case Specification	3
	3.1 Test Case Purpose	3
	3.2 Test Case Description	
	3.3 Model Description	5
4	Test Specifications	7
	4.1 Test Case Targets	7
	4.2 Pass/Fail Criteria	
5	Test Case Results	8
	5.1 Software and Hardware Specifications	8
	5.2 Results Summary	
	5.3 Result Details	
	5.3.1 Sub Test Case ID 1 - Test Target 1	1
	5.3.2 Sub Test Case ID 2 - Test Target 1	
Re	erences	12

1 Introduction

1.1 Purpose of this Document

This document specifies the test case AWG-ERIF-10. It provides general test case information like name and ID as well as information to the confidentiality, status, and classification of the test case.

A detailed description of the test case is given, the purpose of the test case is defined, and the tested features are named. The test case specifications also state the target measures for testing and the expected results, as well as their pass and fail criteria.

Testing results are provided in section 5 for the therein mentioned LS-DYNA® version and platforms.

2 Test Case Information

Test Case Summary			
Confidentiality	external use		
Test Case Name	MAT_224 Dynamic Punch Test Aluminium 2024		
Test Case ID	AWG-ERIF-10		
Test Case Status	active		
Test Case Classification	Example		
Test Case Source	NCAC/GWU		
Tested Keyword *MAT_TABULATED_JOHNSON_COOK			
Member of Test Suite	AWG ERIF SUITE		
Metadata	AWG ERIF		

Table 1: Test Case Summary

3 Test Case Specification

3.1 Test Case Purpose

The purpose of Test Case ID AWG-ERIF-10 is the comparison of results from different cpu architectures for punch tests of Aluminium 2024.

The reliability and consistency of LS-DYNA $^{\circledR}$ as a finite element solver for this punch test simulation is evaluated by performing analyses on different cpu architecture platforms.

3.2 Test Case Description

This Test Case contains punch tests (see figure 1) performed on a Split Hopkinson Bar (SHB) which are used to examine the failure of Aluminium 2024.

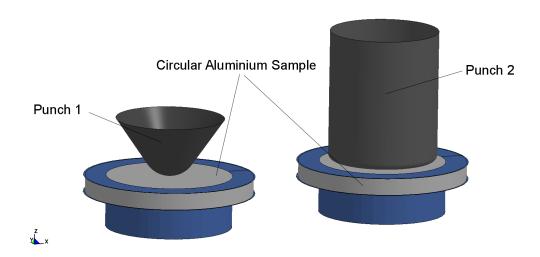


Figure 1: Model sketch: Punch test on circular Aluminium samples with two different punch shapes

Table 2 contains a short summary of the physical model set up.

Physical Model Information			
circular sample geometry	diameter = 14.56 mm, thickness = 1.456 mm		
sample material Aluminium 2024			
punch velocity 20 m/sec			

Table 2: Model set-up data

3.3 Model Description

The model geometry is discretized with solid elements for the circular Aluminium 2024 sample and shell elements for the punch geometry (see figure 2).

The model specifications can be found in table 3, and table 4 defines the sub test case specification.

The material definitions and their parameters can be found in the input decks.

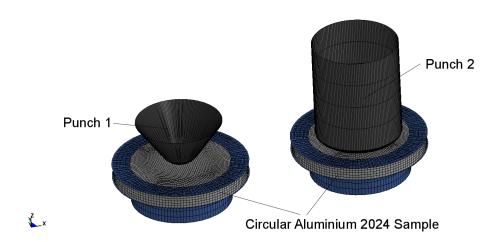


Figure 2: FEA model: Punch test on circular Aluminium samples with two different punch shapes

FEA Model information				
Sub Test Case ID ¹	1	2		
Nodes	32882	34544		
Solid elements	23625	23625		
Solid materials	1	1		
Shell elements	3910	5598		
Shell materials	3	3		
Parts	4	4		
Units	mm (length), s (time), tonne (mass), N/mm ² (stress), Nmm (energy)			

¹ Sub Test Case ID refers to the ID's in table 4

Table 3: FEA Model Information

Sub Test ID	Punch Type	Input Deck Name	
1	Punch 1	pch1_mod.k	
2	Punch 2	pch6_mod.k	

Table 4: Specification of sub test cases

6

4 Test Specifications

4.1 Test Case Targets

Table 5 displays the test case targets. The test case targets specify values or a series of values taken from the finite element analysis solution of the test case and they are used in a comparison of analysis results on different cpu architectures. They are chosen in a way that they are representative of the numerical model.

Test Case Targets					
Target number	output	component type	component id	retrieved from	
1	resultant interface force	Z	2	binout/rcforc file	

Table 5: Test Case targets for Test Case ID AWG-ERIF-10

Test case targets are used to evaluate the cross cpu architecture consistency (see section 4.2).

4.2 Pass/Fail Criteria

These are the Pass/Fail criteria used for the cross cpu architecture consistency test of the Test Case ID AWG-ERIF-10.

The sub test case passes if all of the following criteria are reached:

• For a specific test case target, the maximum distance between an x-y pair of a slope of one cpu architecture/software version combination to at least one x-y pair of all other tested cpu architecture/software version combinations is 15% of the maximum slope value.

Otherwise the cross cpu architecture consistency test fails.

5 Test Case Results

5.1 Software and Hardware Specifications

In order to ensure cross-platform consistency, the herein mentioned sub test cases are run on platforms specified in table 6 and the results are calculated with software versions defined in table 7.

Platform Name	Operating system	CPU type	MPI-Protocol	Number of cpu's 1
sandwich	SUSE LES 11.1	Intel [®] Xeon [®] E7- 8837 @ 2.67GHz	Platform MPI 8.2.0.0	4
ham	CentOS 5.4	AMD® Opteron® 8435@ 800MHz	Platform MPI 8.1.0.0	4
sgi64e	SUSE LES 9.4 ²	Intel [®] Itanium [®] 2 @ 1.6GHz	SGI MPT 1.13	4

¹ Number of cpu's used for calculation of the test case

Table 6: Used Platforms and CPU Type's

Product	Version	Release	Revision	Parallel type ¹	Precision ²	executable
LS-DYNA®	971	R9.0	108899	SMP	SP	ls971.108899.R9.0
LS-DYNA®	971	R9.0	108899	SMP	DP	ld971.108899.R9.0
LS-DYNA®	971	R9.0	108899	MPP	SP	mpp971.108899.R9.0
LS-DYNA®	971	R9.0	108899	MPP	DP	mpd971.108899.R9.0

¹ MPP = Massively Parallel Processing, SMP = Symmetric Multiprocessing

Table 7: Tested LS-DYNA® version

² SGI PROPACK 4

 $^{^2}$ SP = single precision, DP = double precision

5.2 Results Summary

Table 8 contains the results of the Test Case ID AWG-ERIF-10 completed with all combinations of software and hardware defined in section 5.1 (2 * 3 * 4 total calculation runs). Details on the test results can be found in the section 5.3.

The table 8 cross cpu architecture consistency summary is:

- PASS Pass criteria in section 4.2 is attained.
- FAILED Pass criteria in section 4.2 is not attained.
- ERROR sub test case terminates due to error.
- N/A sub test case was not calculated.

Sub Test Case ID	PASS/FAILED
1	PASS
2	PASS

Table 8: Results summary for Test Case ID AWG-ERIF-10

5.3 Result Details

The following subsections contain detailed results for the Test Case ID AWG-ERIF-10 for LS-DYNA® R9.0 Revision 108899.

For each sub test case defined in section 3.3 there is a graph displaying the time history of the result target defined in section 4.1 for the platform and software version combinations defined in section 5.1.

The title of the graph states the name of the input deck, the result file name, and the output separated by underscores. The legend contains the result file name, output, platform, and executable. The last number of the legend specifies the number of cpu's used to calculate the example. A leading minus sign refers to the compatibility option for SMP calculations (see [1] for details on this option).

Example for title and legend:

Title:

'pch1_mod.k: rcforc_slave_x_2' states that the input deck for sub test case 1 was used to calculate these results. The component displayed is the resultant force in x-direction derived from the 'rcforc' output file.

Legend:

'rcforc_slave_x_2_sandwich_ls971.108899.R9.0_4' states that the graph shows the resultant force in x-direction derived from the 'rcforc' output file for an input deck which was calculated on the 'sandwich' platform with a LS-DYNA® R9.0 Revision 108899 binary (SMP, single precision) on four processors.

5.3.1 Sub Test Case ID 1 - Test Target 1

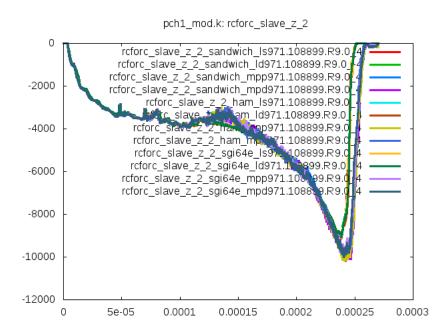


Figure 3: Cross platform results, resultant force in z-direction, sub test case ID 1

5.3.2 Sub Test Case ID 2 - Test Target 1

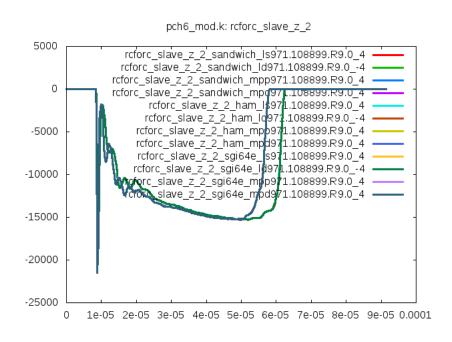


Figure 4: Cross platform results, resultant force in z-direction, sub test case ID 2

References

[1] LSTC, LS-DYNA KEYWORD USER MANUAL, 7374 Las Positas Road, Livermore, CA, 94551, USA, version 971 ed., May 2007.